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Abstract—As one type of the most popular cloud storage
services, OpenStack Swift and its follow-up systems replicate each
data object across multiple storage nodes and leverage object sync
protocols to achieve high availability and eventual consistency. The
performance of object sync protocols heavily relies on two key
parameters: r (number of replicas for each object) and n (number
of objects hosted by each storage node). In existing tutorials and
demos, the configurations are usually r = 3 and n < 1000 by
default, and the object sync process seems to perform well.

To deep understand object sync protocols, we first make
a lab-scale OpenStack Swift deployment and run experiments
with various configurations. We discover that in data-intensive
scenarios, e.g., when r > 3 and n � 1000, the object sync process
is significantly delayed and produces massive network overhead.
This phenomenon is referred to as the sync bottleneck problem.

Then, to explore the root cause, we review the source code of
OpenStack Swift and find that its object sync protocol utilizes
a fairly simple and network-intensive approach to check the
consistency among replicas of objects. In particular, each storage
node is required to periodically multicast the hash values of all
its hosted objects to all the other replica nodes. Thus in a sync
round, the number of exchanged hash values per node is Θ(n×r).

Further, to tackle the problem, we propose a lightweight
object sync protocol called LightSync. It remarkably reduces the
sync overhead by using two novel building blocks: 1) Hashing
of Hashes, which aggregates all the h hash values of each
data partition into a single but representative hash value with
the Merkle tree; 2) Circular Hash Checking, which checks the
consistency of different partition replicas by only sending the
aggregated hash value to the clockwise neighbor. Its design
provably reduces the per-node network overhead from Θ(n× r)
to Θ(n

h
). In addition, we have implemented LightSync as an open-

source patch and adopted it to OpenStack Swift, thus reducing
sync delay by up to 28.8× and network overhead by up to 14.2×.

I. INTRODUCTION

Today’s cloud storage services, e.g., Amazon S3 [1], Google
Cloud Storage [2], Windows Azure Blob [3], and Rackspace
Cloud Files [4], provide highly available and robust infras-
tructure support to upper-layer applications [5]–[11]. As one
type of the most popular open-source cloud storage services,
OpenStack Swift [12] and its follow-up systems such as Riak
S2 [13] and Apache Cassandra [14] (called OpenStack Swift-
like systems) have been used by many organizations and
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companies like Rackspace, UnitedStack, Sina Weibo, eBay,
Instagram, Reddit, and AiMED Stat [15].

In order to offer high data availability and durability,
OpenStack Swift-like systems typically replicate each data
object across multiple storage nodes, thus leading to the need
of maintaining consistency among the replicas. Almost all
existing OpenStack Swift-like systems employ the eventual
consistency model [16] to offer consistency guarantees to the
hosted data objects’ replica versions. Here eventual consisten-
cy means that if no new update is made to a given object,
eventually all read/write accesses to that object would return
the last updated value. For OpenStack Swift-like systems,
the eventual consistency model is embodied by leveraging
an object sync(hronization) protocol to check different replica
versions of each object.

While OpenStack Swift-like systems have been widely used,
we still hope to deep understand how well they achieve the
consistency in practice. To this end, the first part of our
work is to make a lab-scale case study based on OpenStack
Swift. In our realistic deployment and experiments, we observe
that OpenStack Swift indeed performs well (with just a few
seconds of sync delay and a few MBs of network overhead) for
the regular configuration (as proposed in most existing tutorials
and demonstrations [17]–[19]), i.e., r = 3 and n < 1000. Here
r denotes the number of replicas for each object, and n denotes
the number of objects hosted by each storage node.

On the other hand, we find that in data-intensive scenarios,
e.g., when r > 3 and n � 1000, the object sync process is
significantly delayed and produces massive network overhead.
For example, when r = 5 and n = 4M , the sync delay is as
long as 58 minutes and there are 1.53 GB of network messages
exchanged by every node in a single sync round. The exposed
phenomenon is referred to as the sync bottleneck problem of
OpenStack Swift, which also occurs in Riak S2 and Cassandra.
This problem would easily lead to negative influences because
many of today’s data-centric applications have to configure
their back-ends with r > 3 and n� 1000 while still desiring
for quick (eventual) consistency and low overhead [20], [21].

Driven by the observations, the second part of our work
is to investigate the source code of OpenStack Swift, so as
to thoroughly understand why the sync bottleneck problem
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happens. In particular, we find that during each sync round,
the storage node for each data partition (say P ) compares its
local fingerprint of P with the fingerprints of all the other r−1
replicas of P . This sync process introduces network overhead
of r(r − 1) sync messages.

Specifically, as a typical storage technique, partitioning
allows the entire object storage space to be divided into smaller
pieces, where each piece is called a (data) partition. The
fingerprint of a partition is denoted by a file which records the
hash values of all the h data objects included in this partition.
Therefore, each sync message contains h hash values and each
hash value corresponds to a data object.

More in detail, as one storage node can host multiple (nh )
partitions, the number of exchanged hash values by each
storage node is as large as Θ(n × r) in a single sync round.
This brings about considerable unnecessary network overhead.
In addition, the aforementioned shortcomings are also found
in other OpenStack Swift-like systems such as Riak S2 (the
active anti-entropy component [22]) and Cassandra (the anti-
entropy node repair component [23]).

To tackle the sync bottleneck problem, we propose a
lightweight sync protocol called LightSync. At the heart of
LightSync lie two novel building blocks: Hashing of Hash-
es (HoH) and Circular Hash Checking (CHC).

• HoH aggregates all the h hash values of each data parti-
tion (in one sync message) into a single but representative
hash value by using the Merkle tree structure. Thus, one
sync message contains only one hash value.

• CHC is responsible for reducing the number of sync
messages exchanged in each sync round. Specifically,
CHC organizes the r replicas of a partition with a small
ring structure. During a certain partition’s object sync
process, CHC only sends the aggregated hash value to
the clockwise neighbor in the small ring.

With the above design, the per-node network overhead for
OpenStack Swift object sync is provably reduced from Θ(n×
r) to Θ(n

h ) hash values.
We have implemented LightSync as an open-source patch

to OpenStack Swift, which is also applicable to Riak S2 and
Cassandra in principle. The patch can be downloaded from
http://github.com/LightSync/patch-openstack-swift. Real-world
experimental results illustrate that LightSync remarkably re-
duces the sync delay by up to 28.8 times and the network
overhead by up to 14.2 times.

To summarize, this paper makes the following contributions:

1) We (are the first to) discover the sync bottleneck problem
of OpenStack Swift-like systems by conducting various
experiments on our lab-scale testbed (§III).

2) We reveal the key factors that lead to the problem by
investigating the source code of OpenStack Swift (§IV).

3) We propose an efficient and practical object sync proto-
col, named LightSync, to address the problem (§V).

4) We implement an open-source LightSync patch which is
suited to general OpenStack Swift-like systems (§V-D).

5) After the patch is applied to real-world deployments, the
results illustrate that LightSync is capable of significant-
ly improving the object sync performance (§VI).

II. BACKGROUND

OpenStack Swift is a well-known open-source object s-
torage system. It is typically used to store diverse unstruc-
tured data objects, such as virtual machine (VM) snapshots,
pictures, audio/video volumes, and various backups. Many
existing cloud storage systems are designed and implemented
by (partially) following the paradigm of OpenStack Swift.

A. Design Goals of OpenStack Swift

Eventual consistency. OpenStack Swift offers each data ob-
ject eventual consistency, a well-studied consistency model
in the area of distributed systems. Compared with the strong
consistency model, the eventual consistency model can achieve
better data availability but may lead to a situation where some
clients read an old copy of the data object [24].

High availability. OpenStack Swift provides availability (and
durability) by replicating each object across multiple (3 by
default) storage nodes. To ensure high availability, OpenStack
Swift places each replica of a given object “as unique as
possible”, i.e., at best effort replicating each object across
independent nodes. OpenStack Swift achieves this goal by
introducing zones. A zone is a collection of many (physical)
nodes, and there are no such correlations as shared devices or
software-level dependencies among different zones.

B. OpenStack Swift Architecture

As demonstrated in Fig. 1, there are two types of nodes in
an OpenStack Swift cluster: storage nodes and proxy nodes.
Storage nodes are responsible for storing objects while proxy
nodes — as a bridge between clients and storage nodes —
communicate with clients and allocate requested objects on
storage nodes. On receiving a client’s read request on an object
o, the proxy node first searches o’s locations on the storage
nodes, and then randomly forwards the request to one of the
storage nodes hosting o. On the other side, for a given write
request on o, the proxy node sends the request to all the r
storage nodes hosting o. As long as br/2c+ 1 of them reply
with “successful write”, the update is taken as successful.

C. Partition and Synchronization

Like many popular storage systems, OpenStack Swift orga-
nizes data partitions through consistent hashing (or says DHT,
distributed hash table) [25], [26]. Specifically, OpenStack
Swift constructs a logical ring (called the object ring or
partition ring) to represent the entire storage space. This
logical ring is composed of many equivalent subspaces. Each
subspace represents a partition and includes a number of (h)
objects belonging to the partition. According to the working
principle of consistent hashing, h dynamically changes with
the system scale, particularly the number of storage nodes, the
number of data objects, and the max number of partitions.



Fig. 1: OpenStack Swift architecture. Alice sends an object
write request to a proxy node, and then all the replicas of
the target object are (eventually) updated. When Bob wants to
read an object, he first sends an object read request to a proxy
node. Then, one of the storage nodes hosting Bob’s requested
object responds.

Fig. 2: An example for a data partition’s structure. Each suffix
directory includes all the hash values (of data objects) whose
last three characters are equal to the suffix.

Each partition is replicated r times on the logical ring,
physically mapped to r different locations in the storage nodes.
If all the N storage nodes in the logical ring are homogeneous,
the number of partitions hosted by each node is r×p

N , where
p denotes the total number of unique partitions.

Each object is assigned an unique identifier, i.e., an MD5
hash value of the object’s path. An MD5 hash value is made up
of 32 hex(adecimal) characters. Each partition has a directory
(file) called hashes.pkl, which is used to list the hash values
of all the objects in this partition. Further, a directory contains
multiple suffix directories. Each suffix directory includes all
the hash values (of data objects) whose last three characters
are equal to the suffix. For example in Fig. 2, one suffix in
the directory 25 is 882, so the last three characters of all the
hash values located in this suffix directory are exactly 882.

For a given partition, its fingerprint is denoted by the
hashes.pkl file. Each line of the hashes.pkl file contains at least
35 hex characters: 3 for the hash suffix and 32 for the MD5
hash value. The corresponding sync message of a partition

mainly contains its hashes.pkl file, from which one can easily
figure out which replica(s) have a different version status.

III. CASE STUDY

To deep understand how well OpenStack Swift-like systems
achieve consistency, this section presents a lab-scale case study
on the object sync performance of OpenStack Swift.

A. Experimental Setup

We make a lab-scale OpenStack Swift deployment for the
case study. The deployment involves five Dell PowerEdge
T620 servers, each equipped with 2×8-core Intel Xeon C-
PUs@2.0 GHz, 32-GB 1600-MHz DDR3 memory, 8×600-
GB 15K-RPM SAS disk storage, and two 1-Gbps Broadcom
Ethernet interfaces. The operating system of each server is
Ubuntu 14.04 LTS 64-bit. All these servers, as well as the
client devices, are connected by a commodity TP-Link switch
with 1-Gbps wired transmission rate.

One of these servers (called Node-0) is used to run the
Openstack Keystone service for account/data authentication,
and meanwhile plays the roles as both a proxy node and
a storage node in the OpenStack Swift system. The other
servers (called Node-1, Node-2, Node-3, and Node-4) are only
used as storage nodes. In this lab-scale OpenStack Swift
system, the max number of partitions is fixed to 218 = 262144
(as recommended in the official OpenStack installation guide
[19]), and the number of replicas for each data object is
configured as r = 2, 3, 4, 5, respectively.

In addition, we employ multiple common laptops as the
client devices. They are responsible for sending both ob-
ject read and write requests through ssbench (SwiftStack
Benchmark Suite [27]), a benchmarking tool for automatically
generating intensive OpenStack Swift workloads. Each data
object is filled with random bytes between 64 KB and 128 KB
(we will prove in §IV that the object sync performance of
OpenStack Swift is generally irrelevant to the concrete content
and size of each data object).

B. Sync Delay

First of all, we want to understand the impact of the
two key parameters, i.e., r and n, on the running time
of a sync round (called the sync delay). To this end,
we conduct multiple experiments with increasing n =
1K, 10K, 100K, 1M, 2M, 3M, 4M and r = 2, 3, 4, 5. In an
OpenStack Swift system, the sync delay is recorded in its log
file, i.e., /var/log/syslog.

As shown in Fig. 3, when n ≤ 1K, the sync delay is merely
a few seconds. However, when n reaches several million, the
sync delay sharply increases to tens of minutes. Meanwhile,
the sync delay increases with a larger r. The above phenomena
are not acceptable in practical data-intensive scenarios, since
they may well influence the desired availability and consisten-
cy of OpenStack Swift.

An interesting finding is that when n > 1M , the sync
delay increases quite slowly (for a fixed r). This can be
explained by the number of partitions (p) illustrated in Fig. 4.
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Fig. 5: Network overhead.

As mentioned in §III-A, the max number of partitions is fixed
to 218 = 262144. When n grows, p is automatically increased
by OpenStack Swift. But when n > 1M � 262144, p stays
close to (but no more than) 262144. Hence, the number of
sync messages exchanged per node (heavily depending on the
value of p) keeps stable while the size of each sync message
is enlarged, which will be thoroughly explained in §IV.

C. Network Overhead

Next, we aim at understanding the network overhead in a
sync round, which might be an essential factor that determines
the sync delay. For this purpose, we measure the size of
network messages exchanged within the OpenStack Swift
system during the object sync process.

The measurement results in Fig. 5 show that the network
overhead (per node in a sync round) increases with larger
n and/or r. More importantly, the four curves in Fig. 5 are
basically consistent with those in Fig. 3 in terms of variation
trend. For example, when n = 4M and r = 5, the sync delay
reaches the maximum 58 minutes, and meanwhile the network
overhead reaches the maximum 1.53 GB.

When n > 1M � 262144 (for a fixed r), although the
number of sync messages keeps stable, the size of each sync
message still grows with n since each sync message contains
more hash values (of more data objects). This is why the
network overhead continues growing with n when n > 1M .

D. The Sync Bottleneck Problem

Based on the above results, we discover an important phe-
nomenon: the object sync performance can be badly influenced
once the data intensity of OpenStack Swift becomes higher
than a certain level, e.g., r > 3 and n � 1000. This
phenomenon is referred to as the sync bottleneck problem
of OpenStack Swift, which also occurs in the follow-up
systems like Riak S2 and Cassandra (where similar benchmark
experiments illustrate similar situations).

IV. ROOT CAUSE

To explore the root cause of the sync bottleneck problem, we
investigate the source code of OpenStack Swift. This section
presents our investigation results about: 1) how the object sync
process works in OpenStack Swift; and 2) how expensive the
current object sync protocol is.

A. Object Sync Process in OpenStack Swift

The relevant source code of OpenStack Swift (the Icehouse
version 1) is mainly included in the following files:

Path File

/usr/lib/python2.7/dist-packages/swift/obj

diskfile.py
mem diskfile.py

replicator.py
server.py

/usr/lib/python2.7/dist-packages/swift/proxy server.py

/usr/lib/python2.7/dist-packages/swift/proxy/controller base.py
obj.py

/usr/lib/python2.7/dist-packages/swift/common bufferedhttp.py
http.py

/usr/lib/python2.7/dist-packages/swift/common/ring ∗.py

Through the source code review, we find that OpenStack
Swift is currently using a fairly simple and network-intensive
approach to check the consistency among replicas of a data
partition, where a partition consists of h objects.

Fig. 6 depicts an example for a complete OpenStack Swift
object (partition) sync process with r = 5. For a given partition
P , in each sub-process, all the nodes hosting the r replicas
randomly elect one node as the leader, but different sub-
processes must generate different leaders. The leader sends
one sync message to each of the other r − 1 nodes to check
the statuses of P on them. If any node (including the leader)
is not having the latest version of P , it would try to update its
version by sending a request to the other side. When all the
r sub-processes finish, we say an object sync process (i.e., a
sync round) of the partition P is completed.

In addition, by examining the relevant source code, we
find the above approach is also adopted by other OpenStack
Swift-like systems, such as Riak S2 (the active anti-entropy
component [22]) and Cassandra (the anti-entropy node repair
component [23]).

B. Network Overhead Analysis

While we have observed the sync bottleneck problem from
our case study (§III), we hope to quantitatively understand how
expensive the current object sync protocol of OpenStack Swift
is in principle/theory. As §III has clearly illustrated that it is the
enormous network overhead that leads to the sync bottleneck
problem, we focus on analyzing the network overhead.

1We have also examined the latest Kilo version of OpenStack Swift and
find that the concerned source code is generally unchanged.
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Fig. 6: An example for a complete object sync process. Note that the five sub-processes run in parallel rather than in sequence.

It is straightforward to deduce from Fig. 6 that for a given
partition P , the total number of sync messages exchanged
during an entire object sync process is 2C2

r = r(r − 1),
assuming no message loss. Besides, the size of each sync
message depends on the size of the hashes.pkl file (see Fig. 2),
which contains h hash values corresponding to the h data
objects included in P . Furthermore, as one storage node can
host multiple (nh ) partitions, the number of exchanged hash
values by each node is around n

h ×
r(r−1)×h

r = n(r − 1)
in a sync round. Finally, taking the other involved network
overhead (e.g., HTTP/TCP/IP packet headers for delivering
the hash values) into account, we conclude that the per-node
per-round network overhead of OpenStack Swift is in Θ(n×r).

V. LIGHTSYNC: DESIGN AND IMPLEMENTATION

Guided by the thorough understanding of the object sync
process of OpenStack Swift in §IV, we design a lightweight
object sync protocol called LightSync, to tackle the sync
bottleneck problem. LightSync not only significantly reduces
the sync overhead, but also is applicable to general OpenStack
Swift-like systems.

A. LightSync Overview

LightSync is designed to replace the original object sync
protocols in current OpenStack Swift-like systems, so as to
significantly reduce the sync delay and network overhead. It
derives the desired property from the following two novel
building blocks.

First, LightSync employs the Hashing of Hashes (HoH)
mechanism (§V-B) to reduce the size of each sync message.
The basic idea of HoH is to aggregate all the h hash values
in each partition into a single but representative hash value
by using the Merkle tree data structure. HoH replaces the
original approach to generating the fingerprint file hashes.pkl
by generating a much smaller fingerprint file changed.pkl.

Second, LightSync leverages the Circular Hash Checking
(CHC) mechanism (§V-C) to reduce the number of sync
messages exchanged in each sync round. CHC organizes all
the replicas of a partition with a ring structure. During a certain
partition’s object sync process, CHC only sends the aggregated
hash value (by HoH) to the clockwise neighbor in the ring
(instead of the original all-to-all manner).

Finally, §V-D describes how we implement LightSync as an
open-source patch to OpenStack Swift.

Fig. 7: An example for the Merkle tree data structure.

B. Hashing of Hashes (HoH)

Preliminary: Merkle tree. A Merkle tree [28] is a tree
structure for organizing and representing the hash values of
multiple data objects. The leaves of the tree are the hash values
of data objects. Nodes further up in the tree are the hash values
of their respective children. For example, in Fig. 7, Hash 0
is the hash value of concatenating Hash 0-0 and Hash 0-
1, i.e., Hash 0 = Hash(Hash 0-0 + Hash 0-1), where “+”
means concatenation. In practice, Merkle tree is mainly used
to reduce the amount of data transferred during data checking.

Suppose two storage nodes A and B use a Merkle tree to
check the data stored by each other. First, A sends the root-
layer hash value of its Merkle tree to B. Then, B compares the
received hash value with the root-layer hash value of its local
Merkle tree. If the two values match, the checking process
terminates; otherwise, A should send the lower-layer hash
values in its Merkle tree to B for further checking. The above
steps have to be repeated between A and B until the leaves of
the trees are reached. Consequently, the network complexity
of data checking using the Merkle tree is in Θ(logN), where
N is the number of nodes in the Merkle tree.

Generation of the aggregated hash value. We now describe
how HoH generates the aggregated hash value that represents
a given partition P . First, HoH extracts the hashes.pkl file of P
(i.e., the fingerprint of P ), which records the hash values of all
the objects in P . Then, HoH computes the MD5 hash values
of all the suffix hashes in P one by one (as demonstrated
in the Fig. 8 example). This process constructs the Merkle
tree structure. Finally, HoH stores the aggregated MD5 hash
value, i.e., the root-layer hash value of the Merkle tree, in a file
named changed.pkl (also stored in the partition’s directory).
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Fig. 9: An example for a complete LightSync working process. The five sub-processes run in parallel rather than in sequence.

Fig. 8: Hashing of hashes for a data partition.

So far, when a storage node wants to send a sync message
(for a partition P ) to another storage node, it only needs to
“envelop” a single hash value, i.e., the aggregated hash value
in changed.pkl, into each sync message.

Consistency checking. If an aggregated hash value is found
inconsistent between two storage nodes, both of them need to
determine which one is storing an older version by checking
the timestamp recorded in each changed.pkl file. For the
storage node storing an older version, it needs to locally locate
which suffix directory is inconsistent. Since we use the Merkle
tree structure, this storage node can easily find the older suffix
directory within O(log s) steps, where s is the number of suffix
directories in the corresponding data partition.

Compared with the original design of OpenStack Swift,
HoH uses a single but representative hash value to replace
a large collection of hash values, thus effectively reducing the
size of each sync message by nearly h times.

C. Circular Hash Checking (CHC)

CHC is responsible for enabling different replicas of the
same partition to achieve consistency more efficiently. Specif-
ically, during a circular hash checking process, the storage
nodes hosting the r replicas of a given partition P form a
small logical ring, called the replica ring of P . This small
replica ring is easy to form as it already exists inside the large
object ring (refer to §II-C).

Suppose P has five replicas, and ri denotes the storage
node hosting the i-th replica for P . When a storage node
wants to check the consistency of P with the other replicas
of P , it only sends a sync message (generated by HoH) to
the successor node clockwise on the replica ring of P — this
successor replica node is referred to as its clockwise neighbor.
For example in Fig. 9, when r3 wants to check the consistency
of P , it only sends a sync message to r4 rather than r1, r2, r4
and r5 (as in Fig. 6). After each replica node finishes sending a

Algorithm 1: Circular Hash Checking
Input: A set RP containing all the replica nodes’ IDs for

a given data partition P ;
1 while RP 6= ∅ do
2 Randomly pick out a replica node’s ID from RP ;
3 rP ← the picked replica node’s ID;
4 Remove rP from RP ;
5 The replica node (with ID =) rP sends a sync

message to rP ’s clockwise neighbor;
6 if rP ’s version of P is different from the version held

by its clockwise neighbor then
7 rP synchronizes with its clockwise neighbor by

comparing the timestamps of their respective
versions of P ;

sync message to its clockwise neighbor, we say a CHC object
sync process (or a CHC sync round) is completed. Formally,
Algorithm 1 describes how CHC works.

D. Implementation

We implement LightSync for OpenStack Swift (the Icehouse
version) in Python, without introducing any additional library.
Specifically, we develop HoH + CHC by adding, deleting,
or modifying over 500 lines of Python codes mostly locat-
ed in two files: .../swift/obj/replicator.py and
.../swift/obj/diskfile.py. Here we use ‘...’ to
represent /usr/lib/python2.7/dist-packages.

In detail, regarding the implementation of HoH, we disable
the partition hash function for generating the original hash-
es.pkl file, and make our designed changed.pkl file effective
by modifying the function invalidate_hash() located in
.../swift/obj/diskfile.py. Besides, we recompute
the partition hash and update the corresponding changed.pkl
file when the suffix hashes are computed (refer to §II-C).
This is achieved by modifying the function get_hashes()
in .../swift/obj/diskfile.py. In addition, regard-
ing the implementation of CHC, we modify the function
update() in .../swift/obj/replicate.py, so as to
enable the object sync process of CHC.

We have published LightSync as an open-source patch
to benefit the community and meanwhile request for peer
researchers’ comments. It can be downloaded via the following
link: http://github.com/LightSync/patch-openstack-swift.
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OpenStack Swift is also plotted for comparison.
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VI. EVALUATION

In this section, we first analyze the theoretical network
overhead of LightSync based on its design principle in §V.
Then, to evaluate the real-world performance of LightSync,
we conduct experiments on top of OpenStack Swift equipped
with LightSync. Our goal is to explore how well LightSync
improves the object sync process of OpenStack Swift like
systems, mainly in terms of sync delay and network overhead.

A. Theoretical Analysis

By comparing Fig. 6 and Fig. 9, we discover that for a given
partition P , the total number of sync messages exchanged dur-
ing a sync round is reduced from 2C2

r = r(r−1) to r by CHC.
Further, with respect to each sync message, the number of its
delivered hash values is reduced from h to 1 by HoH. As one
storage node can host n

h partitions, the number of exchanged
hash values by each node is around n

h ×
r
r × 1 = n

h with
LightSync. Finally, taking the other involved network overhead
into account, we conclude that LightSync significantly reduces
the per-node per-round network overhead of OpenStack Swift
from Θ(n× r) to Θ(n

h ).

B. Experimental Results

To understand the real-world performance of LightSync, we
still conduct experiments on our lab-scale OpenStack Swift
deployment: five Dell PowerEdge T620 servers (refer to §III-A
for each server’s detailed configuration).

First, as illustrated in Fig. 10, LightSync remarkably de-
creases the sync delay of OpenStack Swift — the four curves
of LightSync are almost always below those of Original. Here
“Original” denotes the original object sync protocol. More
importantly, we observe that the sync delay with LightSync
is generally regardless of r, owing to the notable power of
CHC in avoiding unnecessary sync messages.

Second, as shown in Fig. 11, LightSync also effectively de-
creases the network overhead of OpenStack Swift. Once again,
the four curves of LightSync are below those of Original, and
the network overhead with LightSync is regardless of r.

Quantitatively, LightSync reduces the sync delay by 1.0 ∼
28.8 (5.7 on average) times, and the network overhead by

1.0 ∼ 14.2 (3.6 on average) times. In particular, with regard
to the largest configuration (i.e., r = 5 and n = 4M ), the
sync delay is reduced from 58 to 9.8 minutes, and the network
overhead is reduced from 1567 to 212 MB.

VII. RELATED WORK

In recent years, numerous cloud storage systems have been
designed and implemented with a variety of consistency mod-
els and object sync protocols. For almost every imaginable
combination of features, certain object-based or key-value
stores exist, and thus they occupy every point in the space
of consistency, availability, and performance trade-offs. These
stores include Amazon S3, Windows Azure Blob, OpenStack
Swift, Riak S2, Cassandra, BigTable [29], Dynamo [30], Sim-
pleDB [31], and so forth. In this paper, we focus on improving
the sync performance of achieving eventual consistency — the
most widely adopted consistency model at the moment.

Generally speaking, eventual consistency is a catch-all
phrase that covers any system where replicas may diverge in
short term as long as the divergence is eventually repaired [24].
In practice, systems that embrace eventual consistency have
their specific advantages and limitations. Some systems aim
to improve efficiency by waiving the stable history properties,
either by rolling back operations and re-executing them in a
different order at some of the replicas [32], or by resorting
to a last-writer-wins strategy which often results in loss of
concurrent updates [33]. Other systems expose multiple values
from divergent branches of operation replicas either directly
to the client [30], [34] or to an application-specific conflict
resolution procedure [24].

Particularly, efforts have been made to improve the working
efficiency of OpenStack Swift’s object sync process, e.g., by
computing hash values of objects in real time and deploying an
agent to check the logs for PUT and DELETE operations [35].
The agent is responsible for computing all the hash values
and coordinating the sync process. Compared with LightSync,
the above effort fails to provide quantitative evaluation re-
sults in data-intensive deployments. Besides, some other case
studies [36], [37] reveal that the VM placement strategy of
OpenStack may lead to data availability bottlenecks, but they
do not dive deeper into the sync bottleneck problem.



VIII. CONCLUSION AND FUTURE WORK

OpenStack Swift-like cloud storage systems have been
widely used and studied in recent years. In this paper, we
investigate the object sync protocol that is fundamental to
their performance, particularly the key parameters r (number
of replicas for each object) and n (number of objects hosted
by each storage node).

First, we conduct a lab-scale case study which reveals that
the original object sync protocol of OpenStack Swift is not
well suited to data-intensive scenarios. In particular, when
r > 3 and n � 1000, the object sync delay is unacceptably
long and the network overhead is unnecessarily high. This
phenomenon is called the sync bottleneck problem, which also
occurs in Riak S2 and Cassandra.

Guided by an in-depth investigation into the source code
of OpenStack Swift-like systems, we design and implement a
novel protocol, named LightSync, to practically solve the sync
bottleneck problem. Both theoretical analysis and real-world
experiments confirm the efficacy of LightSync.

There are several important future works that deserve further
investigations. In particular, this paper studies the object sync
protocol of OpenStack Swift-like systems in a relatively small
scale (i.e., lab-scale) with only two key performance metrics
(i.e., sync delay and network overhead). We plan to make a
large-scale study with comprehensive performance metrics in
the near future, including not only sync delay and network
overhead, but also CPU utilization, memory consumption, disk
I/O burden, data availability, time to consistency, and so forth.
Besides, we note that OpenStack Swift provides a parallel
optimization option to accelerate the object sync process by
increasing the number of sync threads. Nevertheless, through-
out this paper, a single sync thread is used during the object
sync process. It will be interesting to clarify the influence of
parallelism (by using multiple sync threads) on the object sync
performance. Moreover, the design of LightSync has to take
the issues of possible node failures and object updates into
account, which are not addressed in this paper. Specifically,
we need to further examine the object sync performance in the
presence of node failures or object updates (after all objects
are initially created).
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